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Abstract- -A finite element formulation is developed for the analysis of singular stress states at
material and geometric discontinuities in anisotropic materials loaded inplane. The displacement
field of the sectorial element is quadratic in the angular coordinate direction and exponential in the
radial direction measured from the singular point. The formulation of Yamada and Okumura
(1983a, b) is extended to take into account the anisotropy of the material. The stress and dis­
placement fields are obtained when the order of the stress singularity is real as well as complex.
When the order of the stress singularity is complex. it is shown that the angular variation of the
stress and displacement fields can be expressed in an infinite number of ways. Results for the
displacement and stress fields obtained when the order of the stress singularity is complex can be
made to match already published results once a similarity transformation is applied. The simplicity
and accuracy of the formulation are demonstrated by comparison to several analytical solutions for
both isotropic and anisotropic multi-material wedges and junctions with and without disbonds. The
nature and rate of convergence associated with the element suggests that it could be used in
developing enriched elements for use with standard elements to yield accurate and computationally
efficient solutions to problems having complex global geometries.

INTRODUCTION

The finite element method is a well known and widely used method for determining stress
intensity factors in linear elastic materials containing cracks. For instance, the ASTM
standards for determining the fracture toughness of materials from test coupons make use
of such an approach. The method requires the prior analytical knowledge of the nature of
the singular stress field near the crack tip. Numerous authors, among them Bogy (1971),
Hoenig (1982) and Sih et al. (1971), have helped establish this knowledge for cracked
isotropic and anisotropic materials. These basic ideas of fracture mechanics can also be
applied to failure initiation and crack growth at locations in structures where the stress
fields are singular, not only due to the presence of cracks, but also due to material and/or
geometrical discontinuities. A number of analytical solutions exist for the order of the
singularity and for the angular variation of the stress and displacement fields around the
singular point in multi-material wedges and junctions (Hein and Erdogan, 1971 ; Ma and
Hour, 1989; Pageau et al., 1994a). In combination with these solutions, the finite element
method can be used to account for the specific far-field geometry and loading conditions
and to evaluate the "stress intensity factors" associated with the singularity.

When analytical solutions are not available for a given type of material and/or geo­
metrical discontinuity, the finite element method can be used directly to numerically estab­
lish the order of the stress singularities and the angular variation of stress and displacement
fields in the vicinity of the singularity. The order of the stress singularity can be indirectly
obtained from a finite element analysis using a direct curve fit on the stresses; see, for
example, Raju and Crews (1981). More recently, Barsoum (l988a, b) and Sukumar and
Kumosa (1992) have used a process called the finite element iterative method to obtain the
converged order of the stress singularity. Gu and Belytschko (1994) use a spectral overlay
method along with a least-square fit to obtain the order of the stress singularity. Among
the authors who use a finite element eigenanalysis to determine the order of the stress

i- Author to whom correspondence should be addressed.

571



572 S. S. Pageau et al.

y

tz..········ ~·········tl11=1 . .

. 11=-1

o
~=-1

3(ro,83>
---1""..... 2(ro,82)

1(ro,81)

x

Fig. 1. Definition of the finite element geometry and natural coordinates in a typical structure where
a singular stress state occurs.

singularity and the angular variation of the stress and displacement fields directly are
Bazant and Estenssoro (1979) and Yamada and Okumura (1983a, b). In these last three
papers, this eigenanalysis approach has also been used to evaluate the singularity at a point
where a crack meets a free surface in an isotropic material. This solution agreed with the
solution given by Benthem (1977) for a mode I loading of the crack. The recent paper by
Gu and Belytschko (1994) also uses an eigenanalysis and compares results with their
spectral overlay method.

The present paper adapts the inplane formulation developed by Yamada and Okumura
(1983a, b) to inplane deformation of wedges and junctions composed of anisotropic
materials. When the order of the stress singularity is real, obtaining the stress and dis­
placement fields from this formulation is straightforward. This is not the case when the
order of the stress singularity is complex, and therefore, this issue is addressed here in a
separate section. The formulation is verified by comparison with existing analytical solutions
for isotropic and anisotropic materials. Results for both the order of the stress singularities
and the angular variation of the displacement and stress fields around singular locations
are given. Finally, the method is applied to bonded and disbonded anisotropic bimaterial
junctions in which singular stress states are present due to material and geometrical dis­
continuities. These examples demonstrate the simplicity and accuracy of the method.

FORMULATION

Finite element formulation for anisotropic materials
The formulation is directly extended from that of Yamada and Okumura (1983a) to

account for anisotropic materials. Much of their formulation is summarized here in eqns
(1)-(13) for completeness and for ease of application to anisotropic materials. Figure I
presents a typical geometry where a singular stress state occurs at point o. The purpose of this
formulation is to develop the methodology to determine the order of the stress singularity by
means of a finite element study. For this purpose, the geometry is divided into several
quadratic sector elements, with each element being located in polar coordinates by its nodes
1-3. A point P in the element can be located using the singular transformation of Yamada
et al. (1979) by the relations

_ (1 + ~)l!i.
r - ro 2

r (1 +~)I!i.or p =-= --
r o 2

(1)

where

3

e= I Hje j
i= I

(2)
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(3)

and 1] and ~ are natural coordinates of the element whose ranges are defined as shown in
Fig. 1.

The displacement field in the element subjected to inplane loads is assumed to be of
the form

(4)

where Un and U represent the inplane-displacement vector of the vertex 0 and the point P,
respectively, and u, represents the inplane-displacement vector of the node i (i = I, 2, 3).

In order to simplify the notation and to measure displacements relative to that of the
vertex 0, we define ui = CUi-UO) and u = (u-uo)' Using eqn (I), eqn (4) can be written with
the new notation as

The strains are then obtained directly from eqns (1)-(3), and (5) as

(5)

where

3

I [Bi]{u,} = [B]{u},
i= 1

{u,} = {~n}
UOi

(6)

Hi

[Bia ] = 0

o

0 0

Hi
23Hi

[Bih] = (), 31] , i = 1,2,3. (7)

23Hi
-Hi

(), 31]

It has been assumed that ()2 = (()l + ()3)/2, (), = ()3-()j, and therefore 01]/3() = 2Ng·
Equations (6) and (7) show that the strains and therefore the stresses are proportional

to /-1. The case where 0 < Re(A) < I defines a singular stress state at the vertex 0 of the
element. Application of the principal of virtual work leads to the following characteristic
equation, for the entire domain S defined in Fig. 1 :

where

(A 2 [A] +;.[B] + [C]){O} = 0, (8)

[A] = I([ka]-[k",]) , [B]=I([kh]-[ksb ]), [C]=I[kc ], {O}=I{u} (9)
s s s s

(10)
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Fig. 2. Reference axis systems for determining local mechanical properties.

(I I)

(12)

(13)

and where the summation over 5 implies assembly of the elements into the global model.
The characteristic eqn (8) can be transformed into a standard eigenvalue problem,

[5] {f} = i. {~}, [5] = [ 0
-Ale

(14)

The element matrices [k] are evaluated using numerical integration by means of
Gaussian quadrature. The material stiffness matrix [D] applies to anisotropic materials
whose properties are symmetric with respect to the 2 = 0 plane (monoclinic material), for
which the inplane behavior of a structure clearly decouples from the antiplane behavior.
[D] must be evaluated at each Gauss point during the numerical evaluation of the integrals,
such that the anisotropy in the material is correctly taken into consideration. Figure 2
depicts a monoclinic material whose principal axes of orthotropy are defined by the axis 1­
2, at an angle of 00 with respect to the global x--y axis. The properties of this material at
the Gauss point shown in the figure, which has polar axis 1'-2' forming an angle of (3 with
respect to the global axis x-y, are defined as

where

D II D I2
D" ]

[D] = D I2 D 22 D 26 ,

D I6 D 26 D n6

PI cos4 (0 1) +P2 sin4 (OI)+2cos 2 (0 1 ) sin 2 (OI)(2G I2P3 +P4)

P3

(IS)

( 16)
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(18)

(20)

and where

for plane stress,

for plane strain, and

(23)

(24)

The quantities £j, £2, £3, V 12, V13, V23, and G I2 are the mechanical properties of the material
in the coordinate system 1-2. The first and last rows of [D] in eqn (15) comprise matrix
[d]. The trigonometric functions involved in [D] and [d] do not permit an exact integration
using Gauss quadrature, unless the material is isotropic. For the isotropic case, exact
integration can be performed using three Gauss quadrature points per element. The influ­
ence of the number of integration points used in computing the elements in eqn (14) will
be described in a later section.

Obtaining the di5placement field from the formulation
When the eigenvalue Aobtained from eqn (14) is real, the eigenvector a defines the

relative inplane displacements at the nodes of the elements, that is, at r = ro for this element.
Since these relative displacements are the same, except for a constant, at all r, the eigenvector
can be viewed as the angular variation of the displacements on rays from the apex through
the nodes. The angular variation of the displacements on rays between nodes can be
obtained by curve fit, or by use of the shape functions. It is convenient to normalize
the eigenvector such that the largest component is 1.0 in absolute value. The complete
displacement field can be written in standard form as:

(25)

where UI = Ur and U2 = Ufi represent the radial and tangential displacements, respectively,
and A j and A 2 represent the angular variation of the radial and tangential displacements,
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respectively. k is a constant or "generalized stress intensity factor", which depends on the
given loading and global geometry of the structure. The Aj,j = 1,2, are obtained from the
eigenvector at the nodes and by curve fit or by means of the shape functions at angles which
do not correspond to the location of a node.

When the eigenvalue Ie is complex, the meaning of the eigenvector, also complex,
requires a more detailed explanation. In generic form the inplane displacements can be
written as

(26)

where UI = u, and U2 = Ue represent the radial and tangential displacement, respectively, and
A I, B], and A 2 , B2 represent the angular variation of the radial and tangential displacement,
respectively. Aj and B j are obtained from the eigenvector at the nodes and are obtained by
curve fit or by means of the shape functions at angles which do not correspond to the
location of a node.

In real form, eqn (26) becomes

Uj = (,~oJ[k ] {Aj cos (Gin (~)) - Bj sin (Gin (~)) }

+k2 {Aj sin (Gin (~)) +Bj cos (Gin (~)) }l j = 1,2 (27)

where f3 = Re(A), 10 = Im(A), and k j and k2 are constants which can be determined by the
geometry and loading conditions for a given problem which contains a singularity of the
type investigated in this study. Equation (27) can easily be rewritten as

Uj = (r)f![k; {Ajcos (10 In (r)) -Bjsin (10 In (r))} +k; {Aj sin (10 In (r))+Bjcos (10 In (r))}J,

(28)

where

Equation (28) shows that the angular variation of the displacements represented by the
eigenvector Aj + iBj, is independent of the size of the finite elements, roo Note that the
constants in eqn (28) are just transformed from the original solution developed in eqn (27).

It may be convenient here again to normalize the eigenvector which is produced by a
given eigenvalue routine as the complex number (AJ+iB). Normalizing a complex number
typically means multiplying that number by another complex number. In real form where
A j and Bj can be seen as the plane components of a vector, this normalization process is the
same as transformation of A j and B; by a similarity transformation. Defining

(29)

(30)

where Ai and B; represent another normalized eigenvector obtained after application of
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the similarity transformation of magnification factor ¢ and rotation angle e, eqn (28)
becomes

ur = (r)/i[k'{{A;cos (dn (r))-B;sin (dn (r))}

+k~{A;sin(t:ln(r))+B;cos(t:ln(r))}], (31)

where

1
k~ = ¢ (k'i sin (e) +kS cos (O)),j = 1,2.

(32)

(33)

Equations (28) and (31) can appear to be very different, depending on the nor­
malization scheme chosen for the eigenvector. However, eqns (28) and (31) are equivalent.
There exists an angle eand a magnification factor ¢ through which one of the eigenvectors
can be transformed to bring it to agreement with the other eigenvector, that is, through
eqns (29) and (30). The existence of apparently different, but equivalent, complex eig­
envectors was observed by Barsoum (1988b) as an acceptable "non-convergence" of the
eigenvectors during the iterative process used there.

It is interesting to note how the coefficients k; and kS, which are a function of the
geometry and the loading conditions, also depend on which eigenvector was chosen to write
eqn (28) or (31). The fact that eigenvectors normalized in all possible ways can be obtained
from one another by a similarity transformation as defined by eqns (29) and (30) also
implies that the coefficients of the problem can be obtained by a similarity transformation
whose magnification factor and rotation angle are as defined by eqns (32) and (33). The
value Jk'{2 +k~2 is an invariant with respect to rotation as seen from eqns (32) and (33).
Due to the multiplicity of the possible solutions for k'{ and k~, these coefficients do not
have any significant physical meaning when they are considered individually. Only the
combined quantity Jk'{2 +k~2 has a value of physical significance. For example, it has
been shown for a bimaterial crack problem by Lin and Mar (1979) that the latter value can
be directly related to the strain energy release rate of the structure.

Obtaining the strain and stress fields from the formulation
When the eigenvalue A obtained from eqn (14) is real, there is no problem obtaining

the angular variation of the strains by making use of eqns (6) and (7) since the nodal values
of inplane displacements are extracted from the eigenvector obtained after solving eqn (14),
as previously explained. The stresses can be obtained directly from the strains by making
use of the constitutive relation {O'} = [D]{t:}.

When the eigenvalue A is complex, using eqns (6) and (7) is not straightforward. A
way to avoid the difficulty of having complex numbers in these equations is to start from
eqn (28) or (31) and differentiate with respect to rand eto 0 btain the strains. Differentiation
with respect to r can be performed analytically and does not present any difficulty. Differ­
entiation with respect to e can only be done numerically element by element using the
derivatives of the shape functions Hi according to the relation aHJaO = (2je\.)(DH,jalJ). The
stresses are obtained from the strains as indicated above.

RESULTS

Convergence of the finite element code

Isotropic materials. As stated earlier, exact integration of the eqns (9)-( 13) is achieved
with numerical integration using three Gauss points per element. The question then arises
as to the number of elements needed to achieve sufficient accuracy in the evaluations of the
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Fig. 3. Convergence of i. for a single isotropic material with a crack (mode I and mode II).

root A obtained from eqn (14). The well-known single-material crack problem shown in
Fig. 3 is the first test case used to evaluate convergence. The exact value of ), for this
problem is 0.5 for both mode I and mode II deformation. The values of Ie predicted by the
finite element method using eqn (14) are shown in Fig. 3 and in Table I as a function of
the number of equal-sized elements composing the 2n wedge angle. These data show a very
strong, monotonic convergence toward the exact solution. The values of A for mode I
converge slightly faster than those for mode II. Note that no use of symmetry has been
made in computing the results shown in Table I. The same values for Ie could be obtained
for each mode with half as many elements if symmetry is accounted for in the model. This
simple case offers promise that convergence may also be excellent when more than one
material is present both for bonded and disbonded junctions. A later section will show the
convergence trend for these more complicated cases in comparison with the exact solutions.

Anisotropic materials. Gaussian quadrature does not integrate the element stiffness
matrices exactly when the material is anisotropic since the local material properties are not
constant over the element. This adds to the problem of convergence associated with element
size discussed in the previous section. The single material crack problem is used here again
as a test case but with anisotropic (monoclinic) material properties as shown in Fig. 4. The
exact solution for I. is again 0.5 as indicated by Sih et al. (1965). The results from eqn (14)

Table 1. Values of i. for an isotropic material
with a crack (Fig. 3)

No. elements in
model Mode I Mode II
._---~--- ------------ ._---

0.545641 0.630267
5 0.508455 0.526639
10 0.500654 0.501963
15 0.500134 0.500401
20 0.500043 0.500129
25 0.500018 0.500053
30 0.500009 0.500026
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Fig. 5. Convergence of i. for a single anisotropic material with a craek (mode II).

are presented in Figs 4 and 5, and in Table 2. Integration with 3.4, and 5 Gauss points per
element was used for models with various degrees of mesh refinement. When only a very
few elements are used, no clear trend is evident between accuracy and the number of Gauss
points. With models large enough to yield values of!. accurate to within I 'X" the integration
scheme does not significantly affect the results. Therefore. for computational efficiency, the
results to be presented in the remainder of the paper were obtained using three integration
points per element. The major difference between the results for the isotropic and anisotropic
materials is that in the latter case, convergence is oscillatory for mode L as shown in Fig.
4, and convergence is not as rapid as in the isotropic case. This oscillatory convergence has
also been observed for the anti plane shear case (Pageau ('I (/1 .• 1994b). However, the
difference between the convergence trends for isotropic and anisotropic materials observed
there for antiplane shear is not as large as observed in the current case. This is due to the
simplification in the formulation which is possible for antiplane shear of isotropic materials
[i.e. eqns (25)-(28) in Pageau el al. (1994b)] and is not possible for the inplane case.
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Table 2. Values of I. for an anisotropic material with a crack (Figs 4 and 5)

Model Mode II

No. elements 3 Gauss 4 Gauss 5 Gauss 3 Gauss 4 Gauss 5 Gauss
in model points points points points points points

2 0.453191 0.618349 0.570665 0.928725 1.244502 1.335052
3 0.528741 0.482038 0.492669 0.624371 0.672879 0.653897
4 0.493052 0.511723 0.509676 0.588732 0.592844 0.593194
5 0.523579 0.517739 0.518098 0.509105 0.520047 0.519757

10 0.498454 0.498773 0.498767 0.503876 0.503667 0.503673
15 0.500019 0.500021 0.500021 0.500987 0.500988 0.500988
20 0.500026 0.500026 0.500026 0.500308 0.500308 0.500308
25 0.500004 0.500004 0.500004 0.500136 0.500136 0.500136
30 0.500002 0.500002 0.500002 0.500067 0.500067 0.500067
35 0.500001 0.500001 0.500001 0.500037 0.500037 0.500037

4.

3.

2.
u r (8)

u r (8) 1.

ue(8) O. ue(8)

-1.
X

-2.

-3.
V =0.2, plane strain

-4.
0 40 80 120 160 200 240 280 320 360

Angle 8

Fig. 6. Displacement field for a mode I loading of the crack. Analytical and FEM (I0-e1ement
model) solutions are concident (dashed line = analytical solution).

Comparison of the finite element displacement field with analytical solutions

Real eigenvalue II.. The isotropic material with a crack as shown in Fig. 3 is used as the
first test case. The angular variation of the radial and tangential displacements are obtained
as explained above from eqn (25). Unlike the eigenvalue A which determines the order of
the stress singularity in r, the angular variation depends on the Poisson's ratio v, and the
type of planar loading. The results obtained for modes I and II from the current formulation
are plotted against the well-known exact solutions for this problem, as shown in Figs 6 and
7. In this case a value of v = 0.2 is used and the finite element model contains 10 quadratic
elements. Despite some inaccuracy in A (0.13 and 0.39% error for mode I and mode II,
respectively) the displacements are in excellent agreement with the exact solution.
Additional elements in the model would improve the accuracy in both Aand displacements
and might be needed if stresses and strains are required. An investigation of the effect of
the number of elements needed to obtain converged strains and stresses is shown by Pageau
et al. (l994b) for the antiplane case. The same trends observed there apply to the present
inplane problem.

Complex eigenvalue A. The test case investigated is that of a bimaterial crack problem
as shown in Fig. 8. An exact solution derived by Chen (1985) is repeated here using the
same notation as follows:
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Fig. 8. Geometry of a bimaterial crack problem.

(34)

(35)

where

(36)

(37)

(38)

(39)



582 S. S. Pageau 1'1 al.

fJ = 0.5 cos (c; In (I')) + c;,sin (c; In (I')) ,

0.25+c

, O.5sin(c: In (r))-c;cos(s In (1'))
fJ = }'

0.25 +c

, ' I
Ij = KA+"y,,

(40)

(41)

(42)

(43)

(44)

(45)

The variables K j , Gj , uj , vj are the Kolosov constant, the shear modulus in material j,
and the x and y displacements in material j, respectively. The eqns (34) and (35) can be
easily rewritten as

U j = If ~ [K,Uj(B) cos (8 In (I')) -gi(e) sin (c; In (I'm

- K II (1;(0) sin (8 In (I')) + gi(e) cos (c; In (I'm], (46)

Vi = If ~ [K,(h;(e) cos (s In (1')) -lice) sin (B In (I'm

- K ,j (hi(e) sin (c; In (I')) + lice) cos (c; In (I'm], (47)

where

. Di(r = 1)+26,sin(B)sin(0(r = 1))
fi(e) = G ',

Ek = I) - 26, sin (e) cos (0(1' = I))
~(~= G ',

Di(r = 1)-26i sin(e) sin (0(1' = I))
l;(e) = G ',

(48)

(49)

(50)

(51)

and the expression D,(r = I) means that D, is evaluated at I' = I. The functionsfj, g" hi' and
l; are functions of the angle eonly, in view of eqns (38)-(42). The eqns (46) and (47) are
comparable to eqn (28). Note that the subscript "j" in eqn (28) is utilized to distinguish the
radial from the tangential displacement, whereas here, the subscript "j" is used to distinguish
the two materials. The form of the eqns (46) and (47) remains unchanged if the dis­
placements are expressed in polar form instead of Cartesian form. They become
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Fig. 9. Radial displacement ficld for a bimaterial crack. Analytical and FEM (lO-element model)
solutions are coincident aftcr normalization (dashed line = analytical solution).

U,j = If~ [KICf/CO) cos (<.In (r» -g/(O) sin (c; ln (r)))

- K lI Cl/(O) sin (I' ln (r» + g/(O) cos (I' ln (r)))), (52)

Uo, = If~ [K, (h/(O) cos (Gin (r» -1/(0) sin (Gin (r»)

-KlI(h/(O) sin (c In (r» +1/(0) cos (<.In (r)))), (53)

where,

f/(O) = f;(O) cos (0) + h/O) sin (0), (54)

(55)

hi(8) = -.t;(8) sin (O)+h,(O) cos (0), (56)

li(O) = -g/O)sin(O)+lj(O)cos(O). (57)

Since eqns (52) and (53) are of the same form as eqn (28), only the angular functions
f/,g/, hi, and 1/, need to be compared to those obtained from the finite element formulation.
The functionsf/ and g/ can be compared to the angular functions AI and B I obtained from
the finite element formulation for the radial displacement U,. In the same way, the functions
h/ and 1/ are comparable to the angular functions A2 and B2 obtained for the tangential
displacement U2' Note that the angular functions AI, B I , A] and B2 are obtained from the
complex eigenvector at the nodes and by means of the shape functions between nodes.

The finite element and exact angular functions are shown in Figs 9 and 10. The
exact value of the order of the stress singularity for the material properties chosen is
0.500000 + 0.100913i. With only 10 elements chosen to model the entire wedge, the value
of the order of the stress singularity is 0.50 1291 + 0.1 a1173i. Figure 9 provides the exact
solution of Chen (1985) forf/(O) and -g/(O), in dashed lines. The solution for the eigen­
vector (AI +iBI) obtained directly from the finite element solution (after application of a
magnification factor of 20 in order to clarify the figure) is also plotted in solid lines. A I and
B 1 differ in amplitude and phase from Chen's (1985) analytical solution, and therefore
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Fig. 10. Tangential displacement field for a bimateria1 crack. Analytical and FEM (lO-element
model) solutions are coincident after normalization (dashed line = analytical solution).

appear different. However, the finite element solution is correct. This solution can be
compared to Chen's (1985) solution by applying the similarity transformation defined in
(29) and (30) to Al and B I with ¢ = 2.1805 and 8 = 11.048°. These new values of A; and
B; give a solution that compares well with the exact solution as shown in Fig. 9. Since any
other values of ¢ and 8 can be chosen, an infinite number of solutions for the angular
variation of the displacements is possible when the eigenvalue Ais complex. With the above
transformation the accuracy of the finite element solution compared to the exact solution
defined by Chen (1985) is very high. Figure 10 provides results similar to those shown in
Fig. 9, where the finite element solution is compared to h' (8) and -1'(8) instead offi(8)
and - gi(8). Here again the eigenvectors A2 and B2 obtained directly from the finite element
solution appear different from the exact solutions. The same similarity transformation
(¢ = 2.1805 and 8 = 11.048') applied to A2 and B2 leads to values A; and B; that match
the exact solution very closely.

Comparison of the stress singularities with existing analytical solutions
Yamada and Okumura (1983a) have shown the accuracy of the method for predicting

the values of the order of the stress singularities in isotropic materials. The current section
concentrates on the accuracy of predicting the values of the order of the stress singularities
in anisotropic materials. The number of examples available in the literature which provide
the exact values of the order of the stress singularities for different geometries is limited.
Several simple cases have been considered and results from the current finite element
method are compared.

The first case of interest is that of Delale et al. (1982), which considers the value of the
order of the stress singularity at the apex of a cylindrically orthotropic wedge. Figure 11
shows a cylindrically orthotropic wedge of angle t/J, where the material properties given in
the polar coordinate system are constant at every location in the wedge. The results are
compared with the analytical solution of Delale et al. (1982) for their material referenced
as 2 and whose relative properties are shown in Fig. 11. Table 3 compares results obtained
using eqn (29) of Delale et al. (1982) and eqn (14) in the current paper. Note that for
this particular case of cylindrical orthotropy, the property transformations expressed by
equations (16-24) are not used. The results for the eigenvalue Ashown in Table 3 correspond
to plane stress conditions which lead to the most severe stress state. The accuracy of the
current method is very good with only 10 elements in the wedge. A slight decrease in
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Material properties:

EslEr =0.0375
GrefEr = 0.10
VrS = 0.187

Fig. It. Cylindrically orthotropic wedge of angle 'P.

Table 3. Values of /. for a cylindrically orthotropic wedge of angle 'P (Fig. 11)

Wedge angle 'P 10-element Exact value Current/.
(degrees) model [Delale 1'1 al. (1982)] Exact A

---- ----

120 0.715154 0.714968 1.000260
180 0.310285 0.310184 1.000326
240 0.187098 0.187004 1.000503
300 0.150841 0.150754 1.000577
360 o 144508 0.144392 1.000803

20 40 60 80 100 120 140 160 180
Angle 8

Fig. 12. Stress field for the case in Fig. II with 'P = 180 . Analytical (dashed lines, Delale 1'1 al.,
1982) and FEM (lO-element model) solutions.

accuracy occurs with increasing wedge angle ljJ. Increasing the number of elements will
improve the accuracy.

The accuracy of the angular variation of the displacement fields has been shown in
several previous examples. Here the accuracy of the angular variation of the stress field is
shown for the cylindrically orthotropic example shown in Fig. 11 with the wedge angle
ljJ = 1800

• Using the analytical solution provided by eqns (17), (29) and (38) of Delale et
al. (1982), exact results were computed corresponding to the most severe stress singularity,
A = 0.310. These stress fields are shown as the dashed lines in Fig. 12. Results obtained
from the current formulation using a 1O-element model are shown as solid lines. The radial
stresses predicted by the two methods are essentially identical and the circumferential and
shear stresses compare very well. Since the radial derivatives of the displacement field are

SAS 32: 5-8
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Table 4. Convergence of several eigenvalues Ai for a cylindrically orthotropic wedge of angle 'If = 360 (Fig. II)

Exact [Delale et at.
Eigenvalue lO-element model 20-element model 30-element model (1982)]

1'1 0.144508 0.144399 0.144393 0.144392
i' 2 0.165628 0.165037 0.165004 0.164994
)'3 0.336346 0.334491 0.334386 0.334357
),. 0.547032 0.541935 0.541640 0.541559
As 0.787123 0.774934 0.774212 0.774015

obtained analytically and the circumferential derivatives are obtained numerically from the
shape functions, these differences are expected. Note that in this rather crude model,
small discontinuities in shear and circumferential stresses exist at the nodes. These small
discontinuities approach zero as more elements are used in the model. The difference
between the exact and approximate stress distribution tends to average to zero over each
element. These differences approach zero on a point by point basis as more elements are
used in the model.

The case of cylindrical orthotropy treated here is interesting in the sense that an
unusually high number of eigenvalues A leading to a singular stress state can be found. This
is shown in Table 4 for qJ = 360 0 where the interface at e= 0, 360' represents a disbond.
The current solution is compared to the exact solution for different numbers of elements in
the model to show convergence trends when noncritical values of t. (i.e. not necessarily
leading to the most severe stress state) are extracted from the current formulation. Note
that the higher the number of eigenvalues needed, the more elements are needed to obtain
the same level of accuracy as that of the most critical eigenvalue. The use of higher order
eigenvalues is necessary when calculating stresses; see, for example, Kaya and Erdogan
(1987). They show that convergence of the numerical solution to a class of singular integral
equations is greatly improved by incorporating higher roots X Therefore, if the current
solution is used in the development of a special element, it is clear that considering only the
most critical root would lead to convergence problems because of the number and close
proximity of other eigenvalues which lead to a singular stress state. With regard to a
possible failure theory, a simple theory could make use of only the highest order singularity
(Delale et al. 1982), but it is likely that a better theory can result from a more accurate
solution to the stress field which requires more singular eigenvalues.

The case of orthotropic wedges as defined by Bogy (1972) is also of interest. The
comparison of results obtained using Bogy's (1972) formulation and the current method
has already been presented for different materials by Selvarathinam and Pageau (1994) and
will not be repeated here. It can be seen there that the orders of singularity predicted by
the two formulations are coincident to 0.05% accuracy in all cases considered using models
with only 20 elements.

Presentation of new results
The simplicity and performance of the method is demonstrated for several different

geometries and material properties for which analytical solutions would be tedious to
obtain. The first case considered is shown in Fig. 13. Two half-planes with cylindrical
orthotropic material properties are bonded together. The material properties of material 1
are held constant with relative values as indicated in the Figure, while the properties of
material 2 are varied such that the ratios E02/£,2' G,Ol!Er2 , and the value of V,R2 are held
constant. The order of the stress singularity Awhich results from the material discontinuity
shown in Fig. 13 is plotted as a function of the ratio Er2 / £d in Fig. 14. These results were
obtained using 10 elements for each half-plane. There are five values of A which lead to a
singular stress state throughout the range of material properties of material 2.

When the ratio E'2/Erl is very small, material I is almost a free-free half-plane with
values of A tending to the limiting values A2 = 0.3102 and A4 = 0.7148. Note that the first
value can be retrieved with more significant digits from Table 3. As far as material 2 is
concerned, and since material 1 appears very stiff in comparison to material 2, material 2
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Material properties:

EelJErl = 0.0375
Grel/Erl = 0.10
VrBl = 0.187

Ee2lEr2 =0.0375
Gre2lEr2 = 0.10
VrB2=0.187

Fig. 13. Two bonded cylindrically orthotropic baIf-planes.
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O.

0.001 0.01 0.1

Fig. 14. Values of l for two bonded half-planes with cylindrical orthotropy (Fig. 13).

is almost a clamped-damped half-space with values of A tending to the limiting values
Al = 0.2619, ..1,3 = 0.4809 and }'5 = 0.8442. When the ratio Er2 /Er1 = 1.0, the two materials
are identical and the values of A exhibit one single and two double roots as shown in the
figure. When (Er2 /Erl ) > 1, the values of A are the same as those obtained by considering
the ratio 1/(Er2 /Erl ) due to the geometrical symmetry of the problem with respect to the
line bonding the two materials.

The second case considered is shown in Fig. 15. Two half-planes, one with cylindrical
orthotropy and the other with rectangular orthotropy as shown in the figure, are bonded
together. The material properties of material I are held constant with relative values as
indicated in the figure, while the properties of material 2 are varied such that the ratios
E v2 / E,2' Gxy2/£,2' and the value of V,y2 are held constant. The order of the stress singularity
A which results from the material discontinuity shown in Fig. 15 is plotted as a function of
the ratio £,2/Erl in Fig. 16. These results are obtained using 10 elements for each half­
plane. Figure 16 looks very different from Fig. 14. However, it is possible to distinguish
some common features between the two figures. When the ratio E<2/Erl is very small,
material I is almost a free-free half-plane with values of A tending to the limiting values
}'I = 0.3102 and ..1,2 = 0.7148, that is, the same values as for Fig. 14. Material 2 is nearly a
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y Material properties:

Eel/Erl = 0.0375
GrellErl = 0.10
vrel = 0.187

Ey2/Ex2 =0.0375
Gxy2/Ex2 =0.10
Vxy2 =0.187

x

Fig. 15. Two bonded orthotropic half-planes.

l.

O.

O.
1...2

O.

O.

O.
I...

O.

O.

0.1

0.001 0.01 0.1 1.0 10

Ex2/Erl

Fig. 16. Values of;, for two bonded half-planes (Fig. 15).

clamped-clamped half-plane with no singular point, and therefore there is no value Ie
between 0 and 1 for this half-plane. When the ratio E'21Erl is very large, material I is nearly
a clamped-clamped half-plane with values of Ie tending to the limiting values 1'1 = 0.2619,
le 2 = 0.4809 and le 3 = 0.8442, that is, the same values as for Fig. 14. Material 2 approaches
a free-free half-plane with no singular point, and therefore there is no value ), between 0
and I for this half-plane. When the ratio £'2/E' 1 is close to unity, Ie has one real value and
one that is complex. Based on these results, if material 2 is bonded to material I in order
to reduce the stress singularity, it seems better to have the properties of material 2 close to
those of material I to maximize the values of l (minimize the stress singularity).

The last two cases considered are directly obtained from those of Figs 13 and 15, as
shown in Figs 17 and 19. The only difference is that a crack-like disbond has been introduced
on half of the bond in the latter two cases. Figures 18 and 20 give the results for the values
Ie corresponding to problems of Figs 17 and 19, respectively. The results obtained for the
bonded cases already given in Figs 14 and 16 are reproduced as dashed lines in Figs 18 and
20, respectively, for comparison.
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Material properties:

EStlEr! = 0.0375
GrSllEr! =0.10
VrSl =0.187

EWEr2 =0.0375
GrS2lEr2 = 0.10
V rS2 =: 0.187

..- ..-- ....

Fig. 17. Two disbonded cylindrically orthotropic half-planes.
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Fig. 18. Values of ;. for two disbonded half-planes with cylindrical orthotropy (Fig. 17).

The results shown in Fig. 18 demonstrate that the shape of the curves representative
of the different values }. are not greatly affected by the disbond. However, the values of A
are lower than those of Fig. 14, as expected. When the ratio E'2/E'1 is very small, material
1 is almost a free-free half-plane with values of A tending to the limiting values A] = 0.3102
and As = 0.7148. Material 2 is almost a clamped-free half space with values of A tending to
the limiting values Al = 0.1262, A2 = 0.2281 and }'4 = 0.5917. When (Er2 /Erl ) > 1, the values
of A are the same as those obtained by considering the ratio 1/(E,2/Erl), due to the
geometrical symmetry of the problem with respect to the line bonding the two materials.
Note that for the ratio E"2/ E"1 = 1, the values of Ie can be found in Table 4 for 20 elements
in the model.

The results shown in Fig. 20 are very different from those of Fig. 16. When the ratio
EdEd is less than 1, one of the three roots is complex. The complex root, whose real part
tends to the limiting value 0.5 when the ratio EdE'1 goes to zero, corresponds to material
2 being almost a clamped-free half-plane. Therefore, the complex value of 1c2 was expected
for E'2/E"1 < 1. The two other limiting values of A, obtained when the ratio Ed/Ed goes to
zero, are those corresponding to material 1 being a free-free half-plane. These values have
already been shown in Figs 14, 16 and 18. When the ratio E,2/E"1 is large, material 1 is
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Material properties:

E61/Er l = 0.0375
Gr61/Er l = 0.10
Vr 61 = 0.187
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Fig. 19. Twa disbanded arthatropic half-planes.
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Fig. 20. Values of I, far two disbanded half-planes (Fig. 19).

almost a clamped-free half-plane for which }.! = 0.1262, Az = 0.2281 and A2' = 0.5917, as
previously seen in Fig. 18.

CONCLUSIONS

A finite element formulation has been developed for determining the order of the
singularity and the angular variation of the inplane displacement and stress fields around
a singular point in anisotropic materials. The sectorial element displacement shape functions
are quadratic in the angular direction and exponential in the radial direction. Numerical
integration is required only in the angular direction resulting in a very computationally
efficient formulation. The rapid convergence of the element has been demonstrated by
comparison to several available exact solutions. Low-order quadrature yields very accurate
results when a reasonable number of elements is used. Monotonic convergence is observed
with mesh refinement in isotropic materials and both monotonic or/and oscillatory con­
vergence is observed with anisotropic materials. When the order of the stress singularity is
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complex, it has been shown that the angular variation of the displacement and stress fields
can be expressed in an infinite number of ways. It is possible to match previously published
results with the current formulation by use of similarity transformations. These trans­
formations have no influence on the actual displacement and stress fields, but they do
influence the form of the field expressions. Predictions for both the order of singularity and
the angular variation of the stress field in multi-material junctions have been shown to be
accurate with very simple models. This accuracy and efficiency suggest that results from
this approach could be used to formulate enriched elements for use in complex geometric
configurations in anisotropic materials.
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